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Abstract

Metrics for evaluation of separation performance of comprehensive two-dimensional gas chromatogragl®aQ)Gahd
for gquantitative comparison of that performance with similar performance of its 1D (one-dimensional) counterparts are
described. The performance improvement can be expressed via reduction in the saturation of a chromatogram or—in the case
of the uniform distribution of peaks along the second dimension—via the peak capacity gain dux®ds@n order of
magnitude peak capacity gain due to the comprehensive GC is possible under optimal conditions. Optimal parameters
of the second dimension column as well as the optimal operational conditions for that column and for the modulator in a
comprehensive GEGC are also presented.
0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction A systematic description of metrics of perform-
ance of comprehensive GGSC as well as the
Since the invention of comprehensive two-dimen- treatment of optimization goals, criteria, constraints
sional gas chromatography (&@GC) by Phillips [1] and solutions requires a space far exceeding one
over a decade ago, several alternative structures [2— lecture or a single report. The goal for the lecture
4] and hundreds of applications of the technique and for this brief report was to describe optimal
have been described. Little attention, however, has solutions and to evaluate their benefits rather than to
been given in the literature to quantitative evaluation, thoroughly formulate the optimization problem and
and to design optimization of the comprehensive its treatment. To accomplish this goal within a single
GCXGC systems, and to quantitative comparison of report, the problem of optimization and its treatment
these systems with their 1D (one-dimensional) coun- are only briefly outlined.
terparts. This void was addressed in the lecture In addition to providing a potentially superior
presented by this author at the 25th International separation (see below) of components in an analyte
Symposium on Capillary Chromatography in Riva mixture, a comprehensive@&@Tanalysis can also
del Garda, Italy, 13—17 May 2002. The content, and reveal a valuable information about the analyte’s
the flow of material in this report follows that in the internal structure represented by a 2D (two-dimen-
lecture. sional) pattern of peak distribution in a chromato-
gram. Even if the analyte’s structure cannot be
E-mail address: leon@fastgc.confL.M. Blumberg). decoded from the peak pattern, the pattern itself can
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be treated as a unique 2D signature of the analyte. In [7] of the solutes at the same tempErdiine,

any case, the very presence of a distinctive 2D peak Iqtik, is known as the solute selectivity.) Two
pattern can be a powerful analyte identification tool. solutes with a given separalAjtyat the same
Generally, a pattern-based decoding of an analyte temperature, can be made to elute at different
structure or a pattern-based analyte identification temperatures where the diffek&ndg,such that

might not necessarily require a separation of all or both solutes elute with the same retention Kactors,
even a majority of peaks, and the separation require- The rate:

ments for a pattern-based analysis might be very 0
forgiving. A study of this approach, however, is char
outside of the scope of this report that treats com-
prehensive G&GC only as a technique allowing to
achieve an adequate separation of more components
of an analyte that it is possible in the case of
optimally designed 1D-GC.

=dT/dg=im AT/Ag at k=1 (2)
g-

is a characteristic thermal constant [6,8] of the
solutes in a given column. This quantity is not
significantly different for different solutes in differ-
ent columns. In a complex mixture covering a wide
temperature range of several hundrédsan average
value of 6,,,, is between 30 and 4@ [9]. This
means, for example, that a ramp covering 300
range (Fig. 1) covers the separability range of about
10. Generally (Fig. 1) the separabilitpg, of all
components in an analyte mixture relative to one
reference component represents a convenient dimen-
sionless scale for a horizontal axis of a chromato-
gram.

2. Méetrics

The essence of the system of metrics utilized here
was described elsewhere [5,6] along with the discus-
sion of shortcomings of several widely used metrics
such as [7] resolutionR,, separation number, etc.
The word system emphasizes the fact that all the
metrics were constructed as members of the same )
system, and work very well with each other. This 22 Separation space
cannot be said about the existing metrics, many of )
which are not compatible with each other [5]. ~ The key feature of the system of metrics of
Following is a brief review of the relevant metrics Separation [5] utilized here is the use of the peaks’
complimented by the extensions of some of them to Standard deviationg,—the measure of peak width

comprehensive GEGC. that can be predicted from parameters of a GC
system for any peak shape—as the basic and the only
2.1. Interaction of solutes with a column unit of separation. A numbefg, of o-wide intervals

(briefly, o-intervals) between two arbitrary times
An important metric describing a potential of two andt, is separation capacity of the interval, (t,). It
solutes, “a” and “b”, of being separated in a given IS important to express the separation capadnyof
column is the separability, an interval {,, t,) via the separability Ag, corre-
sponding to the interval. The rate:
= In(k,/k,) (1)

P, =dS/dg = lim AS/A 3
of the solutes wher&, andk, are retention factors v g Aé}njo 9 @)

325 °C
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Fig. 1. Computer-generated 1D chromatogram of a 1000-component mixture separated in a column (such>a8.28 mm) with
moderate separation power. A horizontal scale unit corresponds to temperature increas€by 33
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is utilized separation power in a given—isothermal moderate separation p@¥er/30 m/0.25 mm=
or temperature programmed—analysis. Quarfitty 350, and”?,~0.8?~=300. For the analyte mixture in
shows how rapidlyS increases with the increase in Fig.Ag=9. Hence,S,~S ,n;=2? Ag=2700. A
Ag, and can be found as: more accurate evaluatiof, gf(accounting forS in
the initial temperature plateau [6]) yiel&s,,~3000.

P,=U2 (4) This is equivalent to assuming thAg=10.

where

2 =~N=+L/H (5) 2.3. Quality of separation of peaks

is the separation power of aé-plate column, and) The separationS, of two peaks having retention

is the _utilizat?on [6] (intrir_15ic efficie_ncy in R_e_f. [5]) times t,, and t,,, is the same as the separation
of ? in a given analysis. The highest utilization, capacity of interval t ., te,). For example, for

U =1, takes place when the solutes are well retained peaks of any shap§=’6 means that there are six
[6] (k>1). Thu_f-zse are the late elutant§ in an ISO-  intervals betweent, , and t,, (For adjacent
thermal analysis, and the solutes eluting during & Gayssian peaks that are not very far apart from each
very slow heating rampR(< 0y, /ty, R—heating  gher R =4S [5]. For example, for Gaussian peaks,
ramp, t,,—void time) in a temperature programmed g_g corresponds t&R.=6/4=1.5)

analysis [6]. While the high retention is generally Let S, be a critical [11], i.e., the lowest accept-
favorable for the separation, it is unfavorable for the gpje separation of two adjacent peaks. The peak
separation-speed tradeoff [10]. It has been shown capacity [5], n,, of an arbitrary interval having

elsewhere [6,10] that, in a temperature-programmed separation capacitgis n_=S/S, ., and the net peak

analysis with optimal heating rate (about TD/t,, =~ capacity [12],n, ,., of the entire analysis is:

0.40, ../t \): ’

Uopt =~0.8 (6) Nenet™ Snelsmin (8)
Because? is roughly the same for all peaks [6], A revealing metric of quality of separation is

Eg. (3) implies that the separation capacBy,,, of saturation, «, of a chromatogram, known from

a ramp coveringAg-wide separability range can be Giddings and Davis [11,13]. This quantity can be
found as [6]S,,,,=% Ag=UPAg. If, as in the case  found as:
of Fig. 1, the ramp provides a major portion of the

net separation capacit{,., of the analysis then a=m/ng o= MSy/Spec (9)
Set= Samp= 2 A9 = UPAg (7) wherem is a number of components in the analyte
mixture. Assuming that in the 1000-component

A chromatogram in Fig. 1 corresponds to a chromatogram+ 1000) of Fig. 1,S,,,=6, one

column (such as 30 x0.25 mm, 12 nx0.1 mm, 64 hasn, ,.,=3000/6=500,a =m/n _ .=1000/500=

mXx0.53 mm, and other columns with the same ratio, 2. A relationship between the saturation and a quality

L/d;, of length,L, to internal diameterd,) with a of separation is illustrated by the data in Table 1.

Table 1

Affect of saturation [11,13]a, on quality of separation

Saturation,« 2 1 0.5 0.2 0.1

Singlets, €>* (%) 1.8 14 37 67 82

Doublets, €2 (+e™) (%) 1.6 8.2 15 12 7.8

Clusters (singlets doubletsttriplets+ - - -), 14 37 61 82 91

e (%)

Components per cluster (average), e 7.4 2.7 1.6 1.2 1.1
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Fig. 2. Comprehensive G&GC chromatogram of a 1000-component mixtuig.=350 (the same a® in Fig. 1), %,=50.

2.4. Comprehensive GC xXGC

There are many ways to reduee for a fixed
number of componentan, in an analyte mixture.
One way (and, some times, the only practical way) is
to increases, ., in Eq. (9) by increasing the utilized
separation powef® ,, Eq. (7), using comprehensive
GCXGC (Fig. 2). In that case, quantitiésy, n_, P,

S U in Egs. (4) and (7)—(9) can be interpreted as

N =N, cocoe = N (10a)
S=Sscrcc =SS, (10b)
U=Ugcxsec =Y, U, (10c)
P =Psexce = P12, (10d)
Ag = Adec.oc = Ag,AQ, (10e)

3. Potentials

To arrive to specific and representative results,
several simplifying assumptions were made. Among

them were the assumptions that the columns in both
dimensions as well as the thermo-modulator have the
the

same diameter and share the same flow,
separability rangeAd, =In(K ,o./K 10, N the sec-

analysis is temperature programmed in the first
dimension and isothermal in each second dimension
run. The time of analysis in the second dimension is
critical for the entire system. Using vacuum outlet
(with MSD, specially designed TCD, etc.) can, in
some cases, substantially reduce the analysis time
[14]. Below, the vacuum outlet for a column in the
second dimension is assumed. This assumption also
simplifies the analysis of the system optimization and
leads to simple results (Table 2). It is also assumed
that, a modulator has a nearly ideal performance
which, in the case of a thermo-modulator, means
nearly 100% retention of all solutes during their
accumulation, and diminishing retention during their
release. The latter might require a cryogenic cooling
below the column temperaturg,,,, during a sample
accumulation, and active heating abolg, during

the sample release. While all these assumptions are
reasonable, they are not the only alternatives in
designing a GXGC system. Some assumptions,
such asAg,=1, require more experimental data.

The potentials of G&GC were evaluated at
optimal conditions corresponding to maximal utilized
separation powef? ,, of the whole GCKGC system
that can be achieved with the same column in the
first dimension running at SOF [15] (speed-opti-
mized flow-rate) and optimal heating rate [10] in
both cases. At SOF, a column plate numh¥y,in
Eq. (5) can be estimated as:

ond dimension can be estimated Ag,=1, the N=L/d, (1D
Table 2

Parameters of the second dimension column and a thermal modulator

SymbOI L2 Lmod ymod t inj2 t anal2 o M2 f

Formula 1 (viad, L,)  d°L?®  1ed?i®  05@dJL)Y° 25 ME 27 5L [ dJe 2 2@ 1t
Formula 2 (viad,, %) d 2% 1.6d »%° 0.5/%2%"° 2.5d @4t 5d P § do ¥ 21d @ 4P

Value (He/H, ) 0.61 m 2.cm 0.01 8.6 ms/5.1 ms 0.87s/0.51s 3.5ms/2.1ms 570 Hz/960 Hz

Symbols and comments. Second dimenslop:column lengtht, ,

injection time;t

analysis timeyr,,, standard deviation of unretained pedkdata

anal2

rate. ModulatorL ., 1ength; ¥, .=t 1/t 4nas AUty Cycle. Parameter 5.8 ms/m for helium, 3.5 ms/m for hydrogen [18]. All values correspond to 3085

mm column in the first dimension.
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It can be shown (see Appendix A.1) that optimal
retention factor, k., Of the last elutant in the
second dimension is:

klast2z4 (12)

This, along with requirements for optimal modula-
tion leads to conclusion that (see Appendix A.2):
P,=22° and P=2,P,=P3° (13)

As in the case of a 1D-GC, the whole separation
power of a GCKGC is not utilized under optimal
conditions. On top of about 80% utilization &f, in
1D-GC, there is about 70% (Eg. (A.7) in Appendix
A.1) utilization of %,. The utilization of each
dimension further drops due to modulation which
lowers ?,, to about 80% of its one-dimensional
value (Eq. (A.20) in Appendix A.2) and has about
the same effect of? ,. As a resultU,,=0.4 for the
entire GCXGC system. This, due to Egs. (7), (8)
and (13) along with the conventions described in Eq.
(10) leads to conclusion that the net gai,, in
peak capacity due to the addition of the second
dimension can be estimated as:

Gn = nc,net,GCXGC/ncl,net =~ 0'5@i/3/52,min

%o'wiaslsz,min (14)

where®,, is the utilized separation power of 1D-

33

G,~0.1N?/R (15)

s,2,min
whereN, is a number of plates in the first dimension
column, andRg, ., is the lowest acceptable res-
olution in the second dimension. For a chromato-
gram in Fig. 1 N,=120000),R;, ,,=1.5 yields
G,=4.3, R,, ;,=0.75 yields G =~8.6, etc. (The
difference between these results and the results in the
previous example comes from the simple number
approximations of all parameters and quotients in the
last two equations.)

Among other important characteristic of a sepa-
ration system is its sample capacity [16], detection
limit [17] and linear range. It can be shown (see
Appendix A.3) that if, like in the case of a thermo-
modulation, the entire sample is transferred from the
first to the second dimension column then the
addition of the second dimension, while reducing the
sample capacity, changes neither the linear range nor
the minimal detectable concentration (MDC) of
comprehensive GR GC.

4. Limits

Optimal parameters of the second dimension
column and the modulator are summarized in Table
2. They all follow directly from the above-listed
equations combined with the formulae provided in

GC performed with the same column and the same appendixes A.1 and A.2 below and with convention-
conditions as the ones used in the first dimension of 4| formulae know from GC textbooks [11,16,17].

GCXGC. Eq. (14) suggests that

The better is the original 1D-system (high %,,,) and
the more tolerant is the whole GC X GC system to
low separation of adjacent peaks in the second
dimension, the greater is the improvement from
adding the second dimension

For a chromatogram in Fig. BX;,=300),S,,,,=
6 yieldsG,=4.5, S,,,=3 yields G, =9, etc.

To express Eqg. (14) in more familiar terms of a
peak resolutionR,, and column plate numbeN, we
shall notice that if all peaks are Gaussian or nearly
Gaussian in the second dimensions t&enR./4 [5].
Accounting for this relation and for Eq. (5) in Eq.

(14) yields:

Shown in the previous section, about an order of
magnitude gain in peak capacity due to addition of
the second dimension is significant, but not over-
whelming. The gain can vanish if the system is not
optimized. This can happen because of the very
demanding requirements (Table 2) to the modulator
and to the second dimension column. Implementa-
tion of each parameter specified in Table 2 represents
a challenge of one sort or another. For example, all
formulae in Table 2 are based on the assumption of

vacuum at the outlet of the second dimension

column. Otherwise, the modulation requirements

can, in some cases, lead to substantial reduction in

the net system peak capacity, ., For example, in
the case of a 38 0M®5 mm column in the first
dimension, replacing vacuum with ambient pressure
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Fig. 3. GGXGC chromatogram of a 1000-component mixture with a distinctive pattern of p@aks350,% ,=50 (the same as in Fig. 2).

at the column outlet in the second dimension would might make it impossible for some implementations
cause about 2-fold reduction in peak capacity gain. of comprehensivk @ to provide a higher

It should also be pointed out that the peak capacity number of resolved peaks compared to their 1D
gain does not necessarily reduce the saturation of a counterparts. It is hoped, however, that the very fact
chromatogram. This might happen when, due to its of clear formulation of the challenges provided in
distinctive 2D pattern (Fig. 3), the 2D distribution of this report can by itself serve as a basis for further
peaks is substantially not-uniform. As mentioned in developments of the technique of comprehensive

Introduction, the revealing of a 2D pattern of peak &8GC

distribution can be a primary goal of a GGsC

analysis. This approach might have a little concern

for the separation of adjacent peaks, and, in that

regard, can be substantially different from com- Appendix A

prehensive G& GC if the term comprehensive (i.e.,

all-inclusive) is understood to emphasize the goal of  ; Optimal retention factor, k
a satisfactory separation of a majority (or all) analysis in isothermal GC
adjacent peaks.

at the end of

last’

It has been shown elsewhere [6] that, in isothermal
) GC, the separation capacitg, of a Ag-wide interval
5. Conclusion can be found asS=PIn(1+(e*®—1)k;. /(1+

i " : Kiro)) = PIN(1+ (€%~ ko8 /(14K o %) =
Under optimal conditions, comprehensive &C P(Ag+In((1+k and

Ag
(.BC can provide an order of magnitud_e lower satura- last @re the retlg?;)ti/o((ra] fati(olig))gf tvr\llre]ef?restkz;ﬁsa the last
tion of a chromatogram compgred to its 1D cpunter- peak in a chromatogram relating as, Eq. (&)./
pgrt based on a_(_:olumn with the same '”‘e”‘?" ﬁrst=eA9. In our case of isothermal analysis in the
_dlameter and requiring the same analysis tlme_. This second dimensionAg=Ag,=1. This reduces the
|mprovemer_1t, coming fror_n_ an order of magnitude previous expression to:
peak capacity gain, is significant, but not overwhelm-

ing, and can vanish if the system is not optimized. S= 2(1+ In((1 + K o) /(€ + K/1s))) (A.1)
Unfortunately, the latter is a real possibility because
the optimal conditions described in the report can be  Let t, ,=(1+k )t ,, be analysis time measured

very challenging: vacuum outlet in the second di- as retention time of the last peak, anét,, . /t,, be
mension column should be used (otherwise, the gain the normalized analysis time. A substitution of:
can become twice as low), a thermo-modulator might

need to be shorter than 1 or 2 cm, sample intro- Kast=7 1 (A-2)
duction time in the second dimension column might j, Eq. (A.1) allows to write

not be allowed to exceed several milliseconds, 1 kHz

or higher data rate might be required, etc. In addition S= 2(1+ In(7/(e — 1 + 7)) (A-3)
to that, the peak capacity gain reduces the saturation
only if the peak distribution along the second Egs. (A.3) and (A.2) illustrate a known fact [6]

dimension is substantially uniform. These challenges that increasing the retention of all solutes (via
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lowering a column temperature, or increasing time is the same as the analysig,_fjpein the
amount of stationary phase) increasdJnfortuna- second dimension. From the data analysis point of
tely, the rate of increase it5 declines with the view [19], the modulation can be treated as a simple
increaser. Eq. (A.3) also shows that, as an alter- moving-average filtering followed by an ideal sam-
native way,S can be raised by raisin@ via increase pling. A result of the repetition of the second
in the column length at a fixekl,, instead of raising dimension analyses is a collection of the second
ki.s: @nd, hencey. In that case, when column outlet dimension chromatograms. In order to construct a
is at vacuum,? is proportional tot,f,(3 [10], and, 2D-chromatogram from this collection, the second
becauser is fixed,—tot./3, i.e. dimension chromatograms should be connected with
S”t;;; (A4) each other using one of many possible interpolation

techniques [19]. The interpolation can also be treated
as data filtering. A linear interpolation is equivalent
to a simple moving-average filtering similar to one
involved in the modulation, and having also accumu-
lation time t,.,,» A collection of all filtering pro-
cesses involved in the first dimension aspect of a
final 2D-chromatogram can be treated as a single
combined filter. Its net effect can be described by
standard deviationg;, of the filter's impulse re-
sponse. A ratio:

Both ways of raising? cause an increase iy,

The preference, therefore, should be given to the way
that offers a larger payoff for the same increase in
t.nar An analytical solution to this tradeoff does not
seem to exist. A numeric analysis of Egs. (A.3) and
(A.4) show that up tok,, slightly over 4, raising
ki.s: IS preferable to raising,,. After that, raisingt,,
becomes more effective way of raisin§ This
suggests that if, in an isothermal analysis, a column
outlet is at vacuum and the sample separability range a = o;/t
is Ag=1 then the column temperature and/or the . N ]
amount of stationary phase should be arranged in adepends on the filter composition. For a filter com-

(A.8)

anal2

way leading to: posed ofi stages oft,,,long simple moving-aver-
age filters:

klast,opt2 4 (AS) -
a=vil12 (A.9)

To evaluate the utilizatiorl),,,,, of the separation
power of the second dimension column, let us notice  The filtering involved in the sample modulation
that, according to its definition, Eq. (3), the utilized and in the first dimension data reconstruction
separation powerd ,, is the separation capacits, broadens the first dimension projections of all peaks,
of a unit-wide separability range(,=SwhenAg= thus reducing the utilizationl),, of the separation
1). This is the case for Eq. (A.1) indicating that, in power, %,, of first dimension. This reveals the
view of Eq. (4),U corresponding to Eq. (A.1) is: following tradeoff between the separation pow#t,

_ in the second dimension, and the net utilized sepa-
U=1+In((1+ ke /(€ + Kias) (A.6) ration power,?,, of the entire GC&XGC system
which, according to Egs. (4) and (10), can be

Substitution of Eqg. (A.5) in Eq. (A.6) results in expressed as:

Ugpe=0.7 (A7)
P, =UU,2,2,=U, U, UZP P, (A.10)
A.2. Optimal separation power in second
dimension In this expression, the utilizatiot),, of the first
dimension is represented via two components: the
Each second dimension run in &GGC can be stand-alone utilizatiok), ,~0.8, Eq. (6), and the
preceded by one or more stages of modulation. The modulation-caused utilizafjop,in comprehen-
latter consists of accumulation of a sample exiting sive>XGEC. With®,, U, andU, fixed (the latter

the first dimension column followed by quick release Us=U, ,,~0.7, Eq. (A.7)),? , becomes propor-
of the accumulated sample. Ideally, the accumulation tiond) 19, % ,, i.e.
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Py~U_ P, (A.11)

mod

Quantity U,,,, can be found asU,,,~o,/
Vo2, + o where o, is the standard deviation of

L.M. Blumberg / J. Chromatogr. A 985 (2003) 29-38

=+2/3~0.816

mod,opt

U (A.20)

To find a numeric value fob in Egs. (A.18) and
(A.19), we recall [6,10] that at optimal heating rate,

the peaks in a stand-alone first dimension. According x«=1/3. For this value accompanied by Eq. (A.5),

to the previous observations,

2

Umod = a-ol/ 0-201+ O

=o,,\a2, +a%2, ., (A.12)
tanalzz (1 + klast)t M2~ (1 + k Iast}‘@ g m2

= (1 + klastz)g)JL 2 (A13)

The last transition is based on relation [18]

oy =1L (A.14)

where ¢,, is the standard deviation of unretained
peak, andr is a gas-dependent constant specified in
Table 2. Due to Egs. (5) and (11), Eq. (A.13) can be
written as:

tanal2: (1 + klast)‘O/-)SEd [ (A15)
Turning now too,, in Eq. (A.12), we notice first
that, during a linear heating ramp covering a wide
separability range (Fig. 1), all peaks elute with
nearly the same width [6] that can be found as:

Oo1= Oy /1t (A.16)

where u=is mobility factor [20] of eluting solutes.

Accounting for Egs. (A.14), (5) and (11), Eq. (A.16)
yields:

o, =Tl /u=2P%dJu (A.17)

Egs. (A.15) and (A.17) allow to rewrite Eq. (A.12)
as

Unoa= PUNVP L+ (2 1b)°12 (A.18a)

b=(V2au(l+Kye) M (A.18b)

Substitution of this expression in Eq. (A.11) yields
Pu~PEP,IN P+ (2,/b)°12. This quantity has a
maximum at

P, bp?®

,opt

(A.19)

Substitution of this condition in Eq. (A.18) yields:

and by the assumption that, in Eq. (A.9%2, Eq.
(A.18) for b yields, b~1.013=1, allowing to write
Eqg. (A.19) as:

P

2/3
2,0pt P 1

(A.21)

A.3. Linear range of a GC X GC system

Ability of a GC system to detect and measure low
concentration solutes is limited by two major factors.
On one hand, a column has limited sample capaci-
ty—the amount of sample that can be injected in a
column without substantially reducing its separation
power. On the other hand, there is a background
noise in each detector. This limits the low level
concentrations that can be detected and measured
with required accuracy. Both the column sample
capacity and the noise level can be expressed in
several ways. The ratio of these two quantities is the
linear range of the system.

The sample capacity of a column can be expressed
via the largest volumey_ ., of a liquefied injected
sample zone. The radial depth and the perimeter of
that zone are equal to the film thickness, and to
the column diameterd,, respectively. LetH and L
be, respectively, plate height and length of a column.
The limit to the axial width of the injected sample
zone can be found from the following consideration.
A spatial standard deviations; , of a non-overload-
ing solute zone_at the end of a column can be found
as [21] o, =\/HL + o7, where o is the axial
standard deviation of the injected sample zone. This
means that, in order to avoid a substantial loss in the
separation,s; should be a small fraction of/LH.

This leads to the conclusion thdj,,,, changes in
proportion tod.d,VLH, i.e.
Vo~ ddVLH (A.22)

If (as in the case of the first and the second
dimension columns in this report) two columns have
the same diameter and flow-rate then their plate

heighits, relate to the diameted,, in approximate-
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ly the same way, i.eH~d_. This allows to further
simplify Eq. (A.22) as:
Vo~ d22d L2 (A.23)

Turning to the noise in a GC system, we should
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sions. Substitution of this relation in Eq. (A.27)
yields:

A~d¥%d, /(1 + k)2 (A.29)

The result would be the same if, for examplg,

notice that it can have several components (detector,yas defined as the ratio of maximum peak height and
noise, chemical noise, etc.). In principal, many of the he nojse leveln,, Eq. (A.24).

noise components can be eliminated or substantially  £q. (A.29) leads to the following observation. In
reduced. However, a detector electronic noise cannotcase of a high column pressure drop (and, par-
be reduced below a certain level limited by the white {jcyjarly, vacuum outlet) the linear range of a GC
noise (a noise with a fixed spectral density) [22]. If gystem does not depend on the column length.
necessary, the data acquired from the detector can berherefore, when used with the same detector (appro-

filtered in a data system to eliminate all those piately filtered in each case), a GGSC system
spectral components of the white noise that can be ysjng the same column diameter in both dimensions

eliminated without substantially increasing the phas the same linear range as the stand-alone first

widths, o, of the peaks. The noise I?VGhyE (ex- _dimension has for the peaks with the same retention.
pressed as root-mean-square, as “peak-to-peak” This also means that, in the analysis of the same

value, etc.) that will remain after the filtering is  mjxture, addition of the second dimension does not
inversely proportional tovo, i.e. change the system MDC (minimum detectable con-

n. ~1/\Vo (A.24) centration) for any solute that is sufficiently sepa-
rated in one-dimensional GC and in GGC and
QuantitiesV, ., andn. can be used to define the Nas the same retention in both cases.

Example. In the case of a 30 mx0.250 mm
column in the first dimension, the optimal second
dimension column is (Table 2), 0.6 m long—a 50-
fold reduction in length. Following are the factors
affecting the linear range of GEGC.

(1) The sample capacity, V..., EQ. (A.23), of the
short second dimension column (and, hence, of the
entire GCXGC) is about seven times lower (86~
7) compared to that of the first dimension column.
(If a stand-alone first dimension was close to the

linear range of a GC system. The shortest way to do
S0 is to notice that, in the case of a white noise, the
random error,g, of a peak area measurement (by
integration) is proportional to/o, i.e. [22]:

e~Vo (A.25)

If necessary,e can be expressed in units of a
sample volume [23], allowing to define a dimension-
less linear ranged, of a GC system as:

A=V, le (A.26) upper limit of its sample capacity then seven times
less sample should be injected in case of X3&C.)
Egs. (A.23) and (A.25) allow to write (2) Peak area measurement error, &. The peaks
out of the second dimension column are 50 times
A~d¥%d LY P ? (A.27) narrower (Eq. (A.28)) than the equally retained peaks

would be in case of the stand-alone first dimension.
At high pressure drop (column inlet pressure is As a result (Eq. (A.25)),s, is about seven times
much higher compared to outlet pressure as in the lower compared to that in case of the first dimension
case of vacuum outlet)y can be found as [18]: column.
_ The net result: A in Eq. (A.26) is the same in
o=(1+krL (A.28) both cases. (End of example.)
Consider now the role of the factok){{® in
Eqg. (A.29). Notice that at the optimal heating rate in
the first dimensiok~=2 for all peaks eluting during
the ramp [6,10]. On the other hand, second dimen-

where k is a solute retention factor (in case of a
temperature-programmed analysisijs measured at
the time of the solute elution) and(Table 2) is a
parameter that does not depend on column dimen-
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sion in comprehensive GEGC is isothermal with
k>2 for most of the solutes. For all those solutds,
(Eqg. (A.29)), is lower compared tal in a stand-
alone first dimension. Accordingly, MDC for those
solutes is higher (worse) in GCGC compared to
MDC in a stand-alone first dimension. This suggests
that GCXGC is, typically, unfavorable forA and
MDC (although, typically, on a minor scale).
Example. For a solute eluting ak, =2 from the
first dimension column, and ak,=4—from the

second dimension column, there is about 1.3 reduc-

tion in A ((1+4)/(1+2))*'*~1.3) and 1.3 increase
(worsening) in MDC. (End of example)
It is also worth mentioning that the results in this
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